Chemistry Model Paper 2025

Time Allowed: 2 Hours

Total Marks: 75

You must bring a soft pencil (preferably type B or HB), a clean eraser, and a dark blue or black pen.

Before attempting the paper, write your name, candidate number, centre name, and centre number clearly in the designated spaces.

Instructions for Candidates

- **Section A** contains multiple choice questions. You are required to attempt all questions by selecting the most appropriate option and marking it on the separate MCQ answer sheet using a soft pencil.
- Section B comprises both theoretical questions and a practical component. All questions in this section are compulsory. Answers must be written in the space provided on the question paper using a dark blue or black pen. You may use an HB pencil for any diagrams or graphs.
- You may use a simple calculator if needed.
- You should show all your working and use appropriate units.
- Do not use an erasable pen or correction fluid.
- Avoid writing over any barcodes printed on the paper.

Information for Candidates

- This paper consists of a total of 75 marks.
- Section A includes 20 multiple choice questions, each carrying 1 mark. There is no negative marking for incorrect answers.
- Section B carries a total of 55 marks, divided as follows:

Theoretical Questions: 30 marks **Practical Component:** 25 marks

- The number of marks for each question or part question is shown in brackets [].
- A copy of the periodic table will be provided with this paper.

Please read all questions carefully and follow the instructions exactly to ensure your responses are properly evaluated.

1 IA 1A						Perio	odic '	Table	of th	e Ele	emei	nts						18 VIIIA 8A
Hydrogen 1.008	2 IIA 2A												13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	He Helium 4.003
3 Li Lithium 6.941	Be Beryllium 9.012												5 B Boron 10.811	6 Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22.990	Mg Magnesium 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VIII - 8	10	11 IB 1B	- 1	12 IIB 2B	Aluminum 26.982	Si Silicon 28.086	Phosphorus 30.974	16 S Sulfur 32.066	Chlorine 35.453	18 Ar Argon 39.948
19 K Potassium 39.098	Ca Calcium 40.078	Sc Scandium 44.956	Ti Titanium 47.88	Vanadium 50.942	Chromium 51.996	Mn Manganese 54.938	Fe 155.933	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 C _{Copp} 63.54	er Z	In 2n 2inc 5.39	31 Ga Gallium 69.732	Germanium 72.61	33 As Arsenic 74.922	Se Selenium 78.09	Bromine 79.904	Kr Krypton 84.80
Rb Rubidium 84.468	Strontium 87.62	Y Yttrium 88.906	Zr Zirconium 91.224	Niobium 92.906	Molybdenum 95.94	Tc Technetium 98.907	Ruthenium 101.07	45 Rh Rhodium 102.906	Palladiur 106.42	47 A Silve 107.8	r Cad	d Imium 2.411	49 In Indium 114.818	50 Sn Tin 118.71	51 Sb Antimony 121.760	Te Tellurium 127.6	53 lodine 126.904	54 Xe Xenon 131.29
55 Cs cesium 132.905	56 Ba Barium 137.327	57-71	Hafnium 178.49	Ta Tantalum 180.948	74 W Tungsten 183.85	Re Rhenium 186.207	76 Os Osmium 190.23	77 r Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.9	ı me	lg ercury 10.59	Thallium 204.383	Pb Lead 207.2	Bi Bismuth 208.980	Po Polonium [208.982]	Astatine 209.987	Rn Radon 222.018
Francium 223.020	Radium 226.025	89-103	Rutherfordium [261]	105 Db Dubnium [262]	Seaborgium [266]	Bh Bohrium [264]	Hassium [269]	Mt Meitneriun [268]	Ds Darmstadti [269]	111 Roentge [272	g Cope		Ununtrium unknown	114 Fl Flerovium [289]	Uup Ununpentiur unknown	116 Lv Livermorium [298]	Ununseptium unknown	
	Lantha Seri	ies Lant	hanum Cei	59 Praseoc 140.	lymium Neody	mium Prom	ethium Sa	Sm I	ropium G	Gd	Tb Terbium 158.925	Dyspro	osium Holi	mium E	rbium Th	ulium Ytte	erbium Lut	_U tetium 4.967
	Actin Seri	ide es Act	C T	91 Protace 231.	a l	J 93 Nepti	lp 94	Pu Anutonium An	\m 96		7 Bk Berkelium 247.070	98 Califo 251.	f Einst	is Feinium Fe	m N	102 Ad Noblelevium Nob	logium Law	

Section A: Multiple Choice Questions (20 questions)

Question 1

The following figure represents the process of distillation of acetone and water mixture:

All of these are applications of the fractional distillation process **EXCEPT**:

- A. It is used in the purification of many organic compounds such as ethers, amide and nitrile.
- B. It is used to separate volatile substances from non volatile solvents.
- C. It is used in the preparation of drug extracts such as alcohols.
- D. It is used for the purification of noble metals.

Question 2

Which of the following separation techniques is given in the diagram?

- A. Filtration
- B. Crystallization
- C. Distillation
- D. Chromatography

In terms of bonding, what do the three lines between the two nitrogen atoms represent?

- A. One pair of shared electrons
- B. Two pairs of shared electrons
- C. Three pairs of shared electrons
- D. A pair of unshared electrons (lone pair)

Question 4

Which of the following is the correct way to represent an exothermic reaction in a chemical equation?

- A. Reactants → Products Energy
- B. Reactants + Energy \rightarrow Products
- C. Reactants → Products + Energy

Question 5

Which of the following conditions is essential for the fermentation process to produce ethanol?

- A. High temperature (above 300°C)
- B. Presence of yeast and anaerobic conditions
- C. Presence of oxygen
- D. Addition of steam to ethane

Question 6

With the help of given representation, identify the specie in which the oxidation takes place.

A	Na
В	O.
C	Na^+
D	O ⁻²

Which pair of compounds are structural isomers of each other?

A. C₂H₆ and C₃H₈

B.CH₃CH₂CH₂OH and CH₃CH(OH)CH₃

C.CH₃CH₂OH and CH₃OH

D.C₂H₄ and C₂H₆

Question 8

Hydrochloric acid $+Y \rightarrow \text{salt} + \text{water} + \text{carbon di oxide}$. What is the reactant Y?

- A. Calcium carbonate
- B. Calcium chloride
- C. Calcium oxide
- D. Calcium hydroxide

Question 9

What will happen when a small piece of burning sodium metal on a combustion spoon is introduced in a gas jar containing oxygen gas?

- A. It will not react with oxygen gas.
- B. It will react violently to form oxide.
- C. It will react slowly to form superoxide.
- D. It will react violently to form hydroxide.

In the given reaction, H⁺ acts as a/an

$$H^+ + : \ddot{O} : H \longrightarrow H : \ddot{O} : H^+ \\ \ddot{H} \qquad \ddot{H}$$

- A. neutral species
- B. acceptor
- C. carrier
- D. donor

Question 11

In the reversible reaction:

$$N_2 + 3H_2 = 2NH_3$$

What will happen to the position of equilibrium if you increase the pressure?

- A. It will shift to the left (toward the reactants)
- B. It will shift to the right (toward the products)
- C. There will be no change
- D. The reaction will stop

Question 12

Which device is used in factories to remove sulphur dioxide (SO₂) from exhaust gases?

- A. Electrostatic precipitator
- B. Catalytic converter
- C. Flue gas desulphurisation unit
- D. Air filter

Question 13

The equation for the reaction when hydrogen is used as a fuel is:

$$2H_1 + O_2 \rightarrow 2H_2O$$

Which statement about this reaction is correct?

- A. Energy is given out so the temperature of the surroundings decreases.
- B. Energy is taken in so the temperature of the surroundings increases.
- C. The reaction is endothermic so the temperature of the surroundings decreases.
- D. The reaction is exothermic so the temperature of the surroundings increases

Consider the following heating curve of a hypothetical substance

At which stage does liquid convert into gas?

A. A to B

B. B to C

C. C to D

D. D to E

Question 15

Which of the following equations correctly represents the complete combustion of methane (CH₄)?

A.
$$CH_4 + O_2 \rightarrow CO + H_2O$$

B.
$$CH_4 + 3O_2 \rightarrow CO_2 + 2H_2O$$

C.
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

D.
$$CH_4 + O_2 \rightarrow C + 2H_2O$$

Question 16

What do scrubbers do in the context of air pollution control?

- A. Convert nitrogen dioxide into oxygen
- B. Filter out solid waste from sewage
- C. Remove or neutralize harmful particles and gases from industrial emissions
- D. Add oxygen to factory chimneys

What is a potential consequence of water scarcity?

- A. Increased access to clean drinking water
- B. Reduced risk of waterborne diseases
- C. Economic prosperity
- D. Limited access to water for agriculture

Question 18

This process is functional in removing carbon dioxide from the atmosphere

- A. lightning
- B. deforestation
- C. burning of fossil fuels
- D. photosynthesis

Question 19

Which of the following is the primary ore from which aluminum is extracted?

- A. Copper
- B. Iron
- C. Bauxite
- D. Gold

Question 20

In the given figure the Zinc cations are shown with the:

- A. localized electron pair
- B. delocalized electron pair
- C. localized electrons
- D. delocalized electrons

Section B: T	heoretical Questions (To	otal marks: 30)
Q1. Oxygen	has several isotopes, including oxygen-16, oxygen-17, and oxy	gen-18.
a. Define the	term isotope.	
•••••	•••••••••••••••••••••••••••••••••••••••	[1]
b. Complete	the table below to show the number of neutrons in the given is	otope of oxygen. [1]
Isotope	Neutrons	
Oxygen-18		
-	on is about compounds that contain magnesium and oxygen.	
The formula	for an oxide ion can be written as	
$8^{16}O^{2-}$		
i. Identify the	number of electrons in this oxide ion	[1]
Electrons:		
ii. State why	the formula for a magnesium ion is $\mathbf{M}\mathbf{g}^{2+}$ rather than $\mathbf{M}\mathbf{g}^{+}$ or \mathbf{M}	$[g^{3+}]$ [1]
•••••	•••••••••••••••••••••••••••••••••••••••	•••••
	structure of magnesium oxide.	[1]
III. Diaw the	structure of magnesium oxide.	[1]
	the percentage by mass of oxygen in magnesium oxide (MgO) answer to two significant figures.).
Percentage b	y mass:	[2]
		[Total 7marks]

Q2. The Haber process is a key industrial method used to manufacture ammonia, a vital chemical in the production of fertilizers.

The balanced equation for the process is:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ/mol}$

Answer the following questions:

a. The reaction is reversible and exothermic in the forward direction.	
Explain why the temperature used in industry is around 450°C, rather than a	lower temper

rature which gives a higher yield [2]

b. State the purpose of using iron as a catalyst in the Haber process. [1]

[Total 3 marks]

- Q3. This question is about alkanes and alkenes.
- i. Butane belongs to the alkane homologous series. Members of the same homologous series have the same functional group and the same general formula. State TWO other characteristics of a homologous series.

[2]

(Fig shows the displayed formula of butane)

ii. Explain how the above figure shows that butane is a saturated compound. [1]

iii. Nonane, C ₉ H ₂₀ , is present in the naphtha fraction from the distillation of petroleum. When nonane is cracked, shorter hydrocarbon molecules are formed.	
Construct the symbol equation for a reaction in which nonane is cracked and the only pro are propane and ethene.	ducts [2]
[Total 5	marks]
Q4.	
a. A chemist has two clear liquids, called Liquid A and Liquid B . To find out what they he/she adds some aqueous bromine solution to each one.	are,
 When she adds bromine to Liquid A, the brown color quickly disappears. When she adds bromine to Liquid B, the brown color stays the same. 	
i. What can you say about whether each liquid is a saturated or unsaturated hydrocarbon? Explain your reasoning.	[2]
ii. What does this tell you about the kinds of carbon-carbon bonds in each liquid?	[2]
iii. Why does the bromine solution lose its color in one liquid but not the other?	[1]
	••••••
b.	
crude oil	

of boiling points and temperature in your explanation. [1] iii. Give ONE product obtained from fractional distillation of crude oil and give one common use for the product. [1] [Total 8 marks] Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1] Copper plate CusO ₄ solution ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	i. Why are fractions with lower boiling points collected at the top of the fractionating column?
of boiling points and temperature in your explanation. [1] iii. Give ONE product obtained from fractional distillation of crude oil and give one common use—for the product. [1] [Total 8 marks] Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1] Copper plate————————————————————————————————————	[1]
[Total 8 marks] Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1] Copper plate CusO ₄ solution ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	ii. How does fractional distillation separate the components of crude oil. Include the importance of boiling points and temperature in your explanation. [1]
[Total 8 marks] Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1] Copper plate CusO ₄ solution ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	
Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1] Copper plate Cuso ₄ solution ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	iii. Give ONE product obtained from fractional distillation of crude oil and give one common use for the product. [1]
Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1] Copper plate Cuso ₄ solution ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	
a battery. Give a suitable reason. [1] Copper plate CuSO ₄ solution ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	[Total 8 marks]
ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]	Q5a.i.A student electroplates a key with copper. She connects the key to the negative terminal of a battery. Give a suitable reason. [1]
	Copper plate Iron object
iii. Which factors affect the thickness of Copper layer during electroplating? [1]	ii. Write the ionic half-cell equations for the reactions at cathode and anode. [2]
iii. Which factors affect the thickness of Copper layer during electroplating? [1]	
	iii. Which factors affect the thickness of Copper layer during electroplating? [1]

Q5 b. Peter wants to take care of his grandfather's vintage car. The outer body of the car is almost rusted.

i. Name TWO conditions which help in the process of rusting.	[2]
ii. What ONE preventive measure does Peter have to take to stop the process of rusting.	••••
	[1]
[Total 7	marks

Paper Chromatography

Q1a. In paper chromatography, why should the ink spot be placed above the solvent level?	
	[1]
b. What type of mixtures can be separated using chromatography? Give an example.	[1]
c. Why is a pencil used to draw the baseline in paper chromatography instead of a pen?	[1]
d. How can you identify the number of components in a mixture using paper chromatography	y? [1]

e. What are the advantages of paper chromatography?	[2]
	••••••
f. Two dyes, A and B, were tested on the same strip of chromatography paper. Dy cm, and Dye B travelled 6 cm. The solvent front moved 9 cm. Which dye is more solvent?	
	•••••
•••••••••••••••••••••••••••••••••••••••	
Show your working using Rf values.	
[To	otal 10 marks]
Q2. a. A student added dilute hydrochloric acid to a test tube containing zinc grar were observed. Identify the gas produced in this reaction. How can the gas be test	ted?
	[2]
b. Vinegar (which contains acetic acid) is spilled on a marble floor. After some time observed. Write a chemical equation of the reaction. Name the gas released.	me, fizzing is [2]
	•••••
c. A teacher asks students to differentiate between sodium carbonate and sodium dilute acid. Which test could be done?	chloride using [2]
	• • • • • • • • • • • • • • • • • • • •
Γ]	Total 6 marks]

Q3a. You are given three unknown metal salt solutions. On adding metal hydroxide Solution gives green precipitates, Solution B gives brown precipitates and Solution C gives blue	n A
precipitates. Identify the metal ions present in each solution.	[3]
••••••	
b. Explain why iron (III) salts can be distinguished from iron (II) salts using sodium hydrox	ide.
	[2]
	•••••
c. During a practical, a student added Sodium hydroxide solution and aluminium foil to a sa and heated it. A gas was produced that turned red litmus blue. Identify the gas and the anion present in the original compound.	-
••••••	
d. A student is preparing magnesium sulphate by reacting magnesium oxide with dilute sulpacid. He uses 4.00 grams of magnesium oxide and obtains 9.0 grams of magnesium sulpaht crystals.	
i. Calculate the theoretical yield of magnesium sulphate. ii. Calculate the percentage yield. (Relative formula mass: MgO = 40, MgSO ₄ .7H ₂ 0 = 246)	
	•••••
	••••••
	•••••
[Total 9 mag	arks]

Chemistry Model Paper -Answer Key

Section A: Multiple Choice Questions (20 marks)

Question Number	Answer Key
1	D
2	D
3	С
4	С
5	В
6	A
7	В
8	A
9	В
10	В
11	В
12	С
13	D
14	C
15	C
16	С
17	D
18	D
19	С
20	D

Section B: (55 marks) Theoretical (30 marks)

Q1a.	same number of protons but different numbers of neutrons/ same protons	1
Q1b.	Number of neutrons = Mass number – atomic number = $18 - 8 = 10$ / Neutrons 10	1
Q1c.i	Oxygen atomic number = 8 (number of protons)/Charge = 2 - means 2 extra electrons/Number of electrons = $8 + 2 = 10$	1
Q1.c.ii	Magnesium loses two electrons to achieve a stable noble gas electron configuration, so it forms a $2+$ ion (Mg^{2+}) .	1
Q1.c. iii	Mg + O	1
Q1.c. iv	 Molar mass of Mg = 24.3 g/mol Molar mass of O = 16.0 g/mol Molar mass of MgO = 24.3 + 16.0 = 40.3 g/mol 	1
	Percentage of O=40.316.0×100=39.7% Answer: 40%	1
Q2.a	lower temperature would give a higher yield of ammonia/ At lower temperatures, the reaction rate is too slow/temperature (around 450°C) is used to balance a reasonable yield with a practical reaction rate.	2
Q2.b	Iron catalyst increases the rate of reaction without being used up.	1
Q3.i	i. They have similar chemical properties	1

	ii. Consecutive members differ by a CH ₂ unit	1
Q3.ii.	single bonds between carbon atoms and contains the maximum number of hydrogen atoms/saturated/only single bonds	1
Q3.iii	$C_9H_{20} \rightarrow C_3H_8 + C_2H_4 + C_4H_8$ / $C_9H_{20} \rightarrow C_3H_8 + 3C_2H_4$	2
Q4.a.i	The brown color of bromine disappears with Liquid A, which shows it reacts with bromine. This is characteristic of unsaturated hydrocarbons that contain double or triple bonds.	1
	Liquid B does not decolorize bromine, showing it is saturated and unreactive in this test.	1
Q4.a.ii	Liquid A contains carbon–carbon double bonds (C=C) or possibly triple bonds.	1
	Liquid B contains only carbon–carbon single bonds (C–C).	1
Q4.a.iii	Because bromine reacts with the carbon–carbon double bonds in Liquid A. In Liquid B, no such reaction occurs because there are only single bonds.	1
Q4b.i.	lower boiling point fractions rise higher and condense at the top	1
Q4b.ii.	Crude oil is heated and vaporized; as the vapor rises up the column, the temperature decreases, so components condense at different heights based on their boiling points, separating them into fractions.	1
Q4b.iii.	gasoline	1

Q5.a.i	it acts as the cathode , where copper ions gain electrons and are deposited as copper metal on the key.	1
Q5.a.ii.	Cu ₂ ++2e−→Cu(copper metal deposited) cathode equation	1
Q5a.ii.	Cu→Cu2++2e- anode equation	1
Q5.a.iii.	Amount of current passed/Duration of electroplating (time)/Concentration of copper ions in the electrolyte (Any one factor is sufficient.)	1
Q5b.i	Water/moisture	1
	Oxygen/air	1
Q5b.ii	Painting the metal surface/Applying oil or grease/Galvanizing (coating with zinc)/Electroplating/Using stainless steel (rust-resistant alloy)	1

Section B: Practical Component (Total: 25 marks)

Q1a.	prevents ink from dissolving into solvent directly	1
Q1b.	coloured mixtures / ink" or "food colorings	1
Q1c.	pencil marks are made of graphite, which is insoluble, while pen ink may dissolve in the solvent and interfere with results	1
Q1d.	by counting the number of separate spots formed on the chromatogram.	1
Q1e.	Can separate complex mixtures	1
	Can identify substances based on Rf values	1
Q1f.	 Rf=Distance travelled by dye/Distance travelled by solvent front Rf for Dye A Rf=93=0.33 Rf=96=0.67 Dye B is more soluble 	4
Q2a.	a.The gas produced is hydrogen gas (H ₂).	1
	b. The gas can be tested by bringing a burning splint near the mouth of the test tube. If hydrogen is present, it will burn with a 'pop' sound.	1
Q2b.	$2CH_3COOH+CaCO_3 \rightarrow Ca(CH_3COO)_2+CO2+H_2O$	1
	Gas released: Carbon dioxide (CO ₂)	1
Q2c.	adding dilute acid fizzing with carbonate	1
	Correct observation, no reaction with chloride	1
Q3a.	A: Iron(II) ion — Fe ²⁺	1
	B: Iron(III) ion — Fe ³⁺	1
	C: Copper(II) ion — Cu ²⁺	1
Q3b.	Iron(II) salts form a green precipitate of iron(II) hydroxide.	1
	Iron(III) salts form a brown precipitate of iron(III) hydroxide	1

Q3c.	Gas: Ammonia (NH ₃)	1
	Anion: Ammonium ion (NH ₄ +)	1
Q3d.	Theoretical yield: 24.6 g	1
	Percentage yield: 37%	1

	Table of Specification –SSC (A) P1-Model Paper						
No.	Chapter Title	MCQs (1 mark)	AO	Theoretical Questions	AO	Practical Component	AO
1.	States of matter and methods of separation	2	AO1 (1) AO2 (1)			10	AO1 (3) AO2 (5) AO3 (2)
2.	Atoms and the Periodic Table	1	AO1 (1)	5	AO1 (1) AO2 (2) AO3 (2)		
3.	Chemical Bonding	3	AO1 (1) AO2 (1) AO3 (1)			6	AO1 (3) AO2 (3)
4.	Qualitative Chemistry	1	AO2 (1)	2	AO1 (1) AO2 (1)	3	AO3 (3)
5.	Chemical Changes	5	AO1 (1) AO2 (2) AO3 (2)	4	AO1 (1) AO3 (3)	6	AO1 (2) AO2 (2) AO3 (2)
6.	Reversible Reactions and Rate of Reactions	2	AO1 (1) AO2 (1)	3	AO1 (1) AO3 (2)		

7.	Organic Chemistry	3	AO1 (1) AO2 (1) AO3 (1)	13	AO1 (8) AO2 (5)		
8.	Air and Water Chemistry	3	AO2 (1) AO3 (2)	3	AO1 (1) AO3 (2)		
		Total =20	AO1= 6 AO2 =8 AO3 = 6	Total = 30	AO1= 9 AO2 =12 AO3 = 9	Total = 25	AO1= 8 AO2 =10 AO3 = 7

	Question- v	vise Breakdown	
Section	Question	Related Chapter	AO
	1	1	1
	2	1	2
	3	3	3
	4	5	1
	5	7	2
	6	2	3
	7	7	1
	8	5	2
	9	5	3
	10	3	2
	11	6	3
	12	6	1
	13	5	2
	14	4	1
	15	7	2
	16	8	3
	17	8	1
	18	8	2
	19	5	2
MCQs	20	3	3
	1	2,3	1,2,3
	2	6	1,2
	3	7	1,2
	4	3,7	1,2
Theoretical Questions	5	8	1,2,3

Practical Component	1	1	1, 2,3
	2	5	1, 2,3
	3	3	1, 2,3
	4	4	1, 2,3

Marks	Percentage	
MCQS	6	
Theory	9	
Practical	8	30%
Total	23	

Marks	Percentage	
MCQS	8	
Theory	12	
Practical	10	40%
Total	30	

Marks	Percentage	
MCQS	6	
Theory	Theory 9	
Practical	7	30%
Total	22	